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Dipole Models for Forward/Inverse Torque
Computation of a Spherical Motor

Kok-Meng Lee, Fellow, IEEE, Kun Bai, and Jungyoul Lim

Abstract—This paper presents an alternative method to model
a multilayer voice coil or an air-cored electromagnet as an equiv-
alent permanent magnet (ePM) such that its magnetic field can be
characterized by a distributed set of multipoles model. We validate
the ePM model by comparing the computed results against exact
solutions and illustrate its effectiveness in computing the magnetic
force using the dipole force equation. Unlike methods that are
based on the Lorentz force equation or the Maxwell stress tensor,
which require computing the volume or surface integrals to de-
rive the forces, the closed-form dipole force method that replaces
integrations with summations dramatically reduces computation
time. We compare the dipole force computation against results of
the Lorentz force equation and the Maxwell stress tensor method,
and validate the comparisons against published experimental data.
To demonstrate the effectiveness of the method, we compute the
inverse torque model of a 3-DOF orientation stage operated on
the principle of a spherical motor that has more controlling inputs
than its mechanical DOF.

Index Terms—Dipole force model, electromagnet (EM), inverse
torque model, spherical actuator.

I. INTRODUCTION

GROWING demands for miniature devices along with the
trend to downscale equipment for automating the man-

ufacture of these products on “desktops” have motivated the
development of mechanically compact actuators for smooth
orientation of a workpiece. One such actuator is a ball-joint-
like spherical wheel motor (SWM) [1] capable of offering
multi-DOF in a single joint. As shown in Fig. 1, the SWM
utilizes a distributed set of electromagnets (EMs) to con-
trol the rotor consisting of high-coercive permanent magnets
(PMs). The spherical motor has more controlling inputs than
its mechanical DOF; the overactuating system offers an ef-
fective means to minimize energy inputs for a given torque
specification.

Both forward and inverse torque models are required in the
design and control of a spherical motor. The forward model
simulates the magnetic torque for a given set of electrical inputs.
The inverse model (required for both design analysis and real-
time control) computes an optimal set of electrical inputs to
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Fig. 1. SWM CAD model [1].

Fig. 2. Force on dipoles [6].

deliver the specified torque. Two methods commonly used in
calculating the forces between stator EMs and rotor PMs of
a spherical motor [2]–[4] are the Lorentz force equation and
the Maxwell stress tensor. These methods require solving the
magnetic field and computing a volume or surface integral to
derive the force model. As general closed-form solutions are
not available, the volume or surface integrals are often solved
numerically.

An alternative method is to compute the magnetic force using
the Lorentz force law in analogy to that on an electric charge [5],
as illustrated in Fig. 2, where we define a dipole (with strength
m) as a pair of source and sink separated by a finite distance.
The force F and torque T acting on the dipole can be written
(in analogy to that on a stationary electric charge) [6] as

F = µ0m [HR+ − HR−] (1a)

T = µ0m [R+ × HR+ − R− × HR−] (1b)

where µ0 is free space permeability, HR+ and HR− are the
magnetic field intensities acting on the magnetic source and
sink of the dipole, respectively, and the subscripts R+ and R−
are the corresponding distances from a field point. Equation
(1) suggests a closed-form solution for computing magnetic
forces/torques of an actuator if both PMs and EMs and their
magnetic boundaries can be modeled as dipoles.

1083-4435/$25.00 © 2009 IEEE
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Recently, the interest to optimize the design of task-oriented
multi-DOF EM actuators has motivated us to develop alternative
techniques for analyzing magnetic fields and forces. This effort
has led to the method of distributed multipoles (DMP) [7] that
computes the 3-D magnetic field of a PM in a closed form. Most
recently, the DMP method has been extended to account for the
presence of the iron boundary in [8]. Once the PMs are repre-
sented using DMP, the torque of an SWM [9] can be computed
using the Lorentz force equation that requires solving a volume
integral. A practical method to further lower the time needed
to compute the Lorentz force is to reduce the volume integral
to a surface integral; for this, a method to derive an equivalent
single layer (ESL) model to approximate the magnetic field of a
multilayer (ML) voice coil was proposed in [10]. While the ESL
model is time-efficient for calculating Lorentz forces, the mod-
eling error, however, increases with coil thickness, particularly
within the core. For applications where compact coil designs
play an important role to achieve high torque-to-volume ratios,
a more accurate yet efficient analytical solution for predicting
the magnetic field and force of an EM is desired.

Here, we offer an improved method to derive an equivalent
PM (ePM) such that the magnetic field of the original ML EM
can be characterized by DMP [7]. This method (which derives
an ePM for an ML EM) complements the procedure discussed
in [9], where focuses have been on the modeling of PMs to
analyze their effects on the forward torque model. With both
the PMs and EMs modeled as DMP, the magnetic forces on
the system can be calculated using the Maxwell stress tensor
method or the dipole force equation. Unlike the commonly used
Lorentz force equation and the Maxwell stress tensor method,
the dipole force equation (replacing integrations with summa-
tions) dramatically reduces computation time. As will be shown,
the closed-form dipole model is an efficient way to compute the
inverse torque model of an overactuated system, especially for
wrist-like spherical motors [9] where a large number of stator
EMs and PMs are involved.

The remainder of this paper offers the following.
1) We illustrate the procedure of modeling an ML EM as an

ePM so that its magnetic field can be characterized by a
distributed set of multipoles (DMP). We validate the DMP
model derived for a cylindrical ML coil by comparing the
computed magnetic fields against known solutions [11].
The discussion offers intuitive insight to the effects of key
design parameters on the magnetic flux.

2) With PMs and EMs in a system modeled as DMP, we
derive the magnetic forces between EMs and PMs in a
system using the dipole force equation. We compare the
dipole force computation against results obtained using
the Lorentz force equation and the Maxwell stress tensor
method, and validate the comparisons against published
experimental data [12], [13].

3) Finally, we demonstrate the effectiveness of the ePM
method and dipole force equation for solving the inverse
torque model of a 3-DOF orientation stage operated on
the principle of a spherical motor.

While describing in the context of an SWM, the dipole method
can be applied to other PM-based spherical motors [14]–[16] and

Fig. 3. (a) ML EM. (b) ePM.

their applications [17], [18] for modeling the nonferrous EMs
and for computation of magnetic fields.

II. DMP MODEL OF AN ML EM

The process of modeling an ML EM as an ePM involves
finding an equivalent magnetization M in terms of the current
density J and geometry of the EM. The magnetic flux density
created at R′(x′, y′,z′) to the field point R(x, y, z) is given by
the Biot–Savart law [11]

BEM =
µ0

4π

∫
V

J × (R − R′)
|R − R′|3 dV (2a)

where µ0 is the free space permeability. For a PM, the magnetic
flux density can be calculated from the negative gradient of the
analytical magnetic potential [11]

BPM =
µ0

4π

∫
V

−(∇ · M)(R − R′)
|R − R′|3 dV

+
µ0

4π

∫
S

(M · n)(R − R′)
|R − R′|3 dS (2b)

where n is the unit surface normal. Unlike (2a), the calculation
of BPM does not need the cross product of J and R − R′

vectors. Equations (2a) and (2b) provide the basis for deriving
an ePM for the ML EM. The interest here is to seek the field
solution outside the physical region of the EM, particularly near
its boundary along the magnetization axis.

The procedure for deriving the ePM is best illustrated through
an example. Cylindrical PMs and EMs are commonly used.
Some analytical and experimental results are also available for
model validation. They are used here for clarity to illustrate the
DMP modeling procedure.

A. Cylindrical EM

Fig. 3(a) and (b) shows the geometry of the cylindrical EM
and its corresponding ePM (with the same l and ao ). The current
density of the EM is given by

J = J(r)eθ , where

{
J(r) = 0, 0 ≤ r < ai

J(r) = J, ai ≤ r ≤ ao

(3)

and ai and ao are the inner and outer coil radii.
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Fig. 4. Effect of ar and L on BEM z 0 (ε/l = 0.01). (a) Radial distribution of
BEM z . (b) Effect of ar (L = 0.5). (c) Effect of L. (d) Effect of ar .

From (2a), the z-component of the EM flux density can be
calculated

BEMz (X,Y,Z)
µ0J (l/2)

=
1
4π

∫ 1

ar

∫ 1

−1

∫ 2π

0

× ρ (ρ − X cos θ − Y sin θ) dθ dZ ′ dρ

[(X − ρ cos θ)2 + (Y − ρ sin θ)2 + L2(Z − Z ′)2 ]3/2

(4)

where (X,Y,Z) = (x/ao, y/ao , 2z/l), ρ = r/ao , ar = ai/ao ,
and L = l/(2ao). A general closed-form solution to (4) is not
available. To investigate the effect of the aspect ratios (ar and
L) on BEMz for actuator design, we numerically integrate (4)
at z = l/2 + ε along the radial direction, where ε is a positive
number. The results are graphed in Fig. 4. In Fig. 4(a), the
values are normalized to BEMz0 , or to the value of BEMz at
(0, 0, Z = 1 + 2ε/l), given in

BEMz0

µ0Jao
= L ln

(
1+ ρo−
ar + ρi−

)
+L

(ε

l

)
ln

[
(1+ ρo−)(ar + ρi+)
(1+ ρo+)(ar + ρi−)

]

(5)

where ρo+ =
√

4L2 (ε/l)2 + 1, ρo− =
√

4L2 (1 + ε/l)2 + 1,

ρi+ =
√

4L2 (ε/l)2 + a2
r , and ρi− =

√
4L2 (1 + ε/l)2 + a2

r .

When ε/l � 1 or near the physical boundary

BEMz0

µ0Jl/2

∣∣∣∣
(ε/l)→0

= ln

(
1 +

√
1 + 4L2

ar +
√

a2
r + 4L2

)
. (5a)

Some observations can be made in Fig. 4.
1) As shown in Fig. 4(a) and (b), BEMz linearly decreases

from ai to ao along the radial direction. When 0.25 ≤ L ≤
1, BEMz is relatively uniform inside the air core. BEMz0
increases with coil thickness (or smaller ar ) for the same
ao and l, implying that thicker coils have higher magnetic
fluxes (proportional to the area under the curve).

2) Fig. 4(c) shows that the drop in BEMz0 is approximately
linear with ar . BEMz0 , however, increases exponentially
with L and approaches a constant for a given ar [see
Fig. 4(d)].

B. Equivalent Magnetization M of the ePM

For a cylindrical PM, M is zero outside the physical bound-
ary where r ≥ ao . This and the aforementioned observations
suggest that the magnetization of the ePM takes the form

M = M(r)ez ,

where

{
M(r) = Mo, 0 ≤ r < ai

M(r) = Mo − J(r − ai), ai ≤ r ≤ ao

(6)

where M0 is an integral constant to be found by comparing (2a)
and (2b). Since the flux density of the cylindrical ePM has a
maximum along its magnetization, we find M0 from BPMz =
BEMz at (0, 0, l/2 + ε). Substituting (6) into (2b) and noting
that ∇ · M = 0, the first term on the right-hand side of (3)
disappears and the second term can be written as

BPMz0

µ0Jl/2
=

BEMz0

µ0Jl/2

+
1
Jl

[J (ao − ai) − M0 ]
(

ε

ρo+ao
− l + ε

ρo−ao

)
(7)

where M0 can now be determined by equating the last term of (7)
to zero such that BPMz0 = BEMz0 . As the factor involving the
independent variable ε is not always zero, M(r) = J(ao − ai).
Hence, the equivalent magnetization M graphically illustrated
in Fig. 5(a) is given by

M = M(r)ez , where

{
M(r) = J(ao − ai), 0 ≤ r < ai

M(r) = J(ao − r), ai ≤ r ≤ ao.
(8)

C. Dipole Model of an ML EM (DMPEM )

Once the ePM is found, the EM can be modeled using a
DMP [7]. For a cylindrical PM, the DMP consists of k circular
loops of n equally spaced dipoles parallel to the magnetization
vector, as shown in Fig. 5(b). The loops (each with radius āj )
are uniformly spaced

āj =
aoj

k + 1
, at z = ± �̄

2
(9)
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Fig. 5. DMP model of a magnet. (a) Equivalent M. (b) Dipole distribution.

TABLE I
SIMULATION PARAMETERS

where 0 ≤ j ≤ k. The flux density at point P(x, y, z) can be
computed using

B =
µ0

4π

k∑
i=0

mi

n∑
j=1

(
Rij+

|Rij+ |3
− Rij−

|Rij−|3

)
(10)

where Rij+ and Rij− are the vectors from the source and sink of
the jth dipole on the ith loop to P, respectively. The procedure
of deriving the parameters (k, n, �̄, and mi) of the DMP for a
cylindrical PM can be found in [7].

III. MODEL VALIDATION

We validate the DMP derived for a circular EM by comparing
the magnetic field distribution and force computation against
known solutions. The results are given in Section III-A and
III-B, followed by discussions in Section III-C.

A. Validation of Magnetic Field Computation

As a basis for model validation, we numerically integrate the
exact integral equation (4) for the flux density of an ML EM
so that the DMPEM model and the ESL approximation can be
compared. Table I lists the dimensions of the EM and the values
of the parameters defining the ESL and DMPEM models. Since
the ESL model is singular at the surface, we plot Bz and Br

along the radial direction at z = l/2 + ε, with ε = 0.55 mm,
and Bz along the z-axis for the thick EM in Fig. 6.

B. Validation of Magnetic Force Computation

We compute the magnetic force between an PM and an EM
for two test setups shown in Fig. 7. Published experimental
force data [12] (numerically validated with a mesh-free method
in [13]) are available for comparison. In the following computa-

Fig. 6. BEM z and Br in tesla (EM1). (a) Bz along the z-axis. (b) Bz at
ε = 0.55 mm. (c) Br at ε = 0.55 mm.

Fig. 7. Experimental setup [12] and parameters.

TABLE II
VALIDATION SIMULATION PARAMETERS

tion, the PMs are modeled as DMPPM [7], with the parameters
summarized in Table II.

Three different methods for modeling the magnetic fields and
forces are compared.

Method I computes the force using Maxwell stress tensor

F =
∮

C

T dC, where T =
1
µ0

(
B(B · n) − 1

2
B2n

)
(11)
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where C is an arbitrary boundary enclosing the body of inter-
est and n is the normal of the boundary interface. Equation
(11) requires the total field B (contributed by both the PM
and EM) to compute the force by the surface integration. As a
basis for comparison, the B-field of the ML EM is numeri-
cally computed using (2a).

Method II calculates the Lorentz force exerted on the current
carrying EM

F = −
∮

B × I dn, where I =
∫∫
© J dS (12)

where n is the unit current direction vector and S is the cross
section of wire. Since the current density vector J is directly
used in the calculation, only the B-field of the PM is needed in
the Lorenz force equation (12). The ML EM is replaced with
the ESL model [7] (with equivalent current density Je , wire
diameter dw , and coil radius ae ), which reduces the volume
integral to a surface integral.

Method III used the dipole force equation in analogy to that on
a stationary electric charge by the Lorentz law [5] to compute
the net force acting on the PM

The net force is simply the summation of the individual forces
on the dipoles that characterize the PM

F =
µ0

4π

nr∑
i=1

mri

ns∑
j=1

msj
(Rsj + ri + − Rsj + ri−

+Rsj −ri− − Rsj −ri + ). (13)

In (11), Rs±r± = (Rs± − Rr±) / |Rs± − Rr±|3 , and nr and
ns are the number of dipoles of the PM and EM, respectively.
The EM is modeled as DMPEM .

The parameters for the ESL model and the DMPEM are sum-
marized in Table II. The magnetic fields of the large and small
coils are given in the left and right columns in Fig. 8, where Bz

is plotted along the z-axis, and Bz and Br are plotted along the
radial direction at z = l/2 + ε, with ε = 0.55 mm. The com-
puted forces F are compared against published experimental
data Fexp in Fig. 9. Table III compares the time required to
compute 26 data points in Fig. 9(a) using a computer with Quad
Core 2.66 GHz CPU and 8 GB RAM.

C. Discussion of Results

Some observations in Figs. 6, 8, and 9, and Table III are
discussed as follows.

1) Unlike the ESL model where the equivalent current den-
sity Je is determined from the 2-D magnetic field, the
equivalent magnetization M of the ePM is derived using
the complete 3-D integral. As shown in Figs. 6 and 8, the
DMPEM -modeled flux densities agree very well with the
solutions to the exact integral equation (4) for both thin
and thick coils. The ESL model provides a reasonable pre-
diction of the z-component flux density, but discrepancies
from the exact solutions increase with coil thickness (or
smaller ai/ao ).

2) The Maxwell stress tensor in method I can be computed
using the DMPPM and DMPEM , which yields the same

Fig. 8. Computed magnetic flux density. (a) Large. (b) Small.

Fig. 9. Computed forces and experimental data. (a) Tangential force, large
coil. (b) Tangential force, small coil. (c) Axial force, large coil. (d) Axial force,
small coil.

solution to the dipole force equation as in method III.
However, unlike the Maxwell stress tensor method or
the Lorentz force equation (with the ESL approximation)
that require numerical computations of a surface integra-
tion, the dipole force equation (replacing integrations with



LEE et al.: DIPOLE MODELS FOR FORWARD/INVERSE TORQUE COMPUTATION OF A SPHERICAL MOTOR 51

TABLE III
COMPARISON OF COMPUTATION TIME

Fig. 10. 3-DOF orientation stage. (a) CAD model. (b) Table and load.

summations) is in closed form, dramatically reducing
computation to 0.0625 s, as shown in Table III.

3) As shown in Fig. 9, the Maxwell stress tensor and the
dipole force equation (or methods I and III, respectively)
agree very closely with published experimental data while
the ESL model (which reduces the volume integral of
the ML EM to a surface integral of a single-layer coil)
overestimates the computed forces as expected.

IV. ILLUSTRATIVE 3-DOF ORIENTATION STAGE

With EMs and PMs modeled as DMP, the dipole force model
is an efficient way to compute the magnetic force in 3-D space
for the design of an EM system, especially for wrist-like spheri-
cal motors [9] involving a large number of EMs and PMs. As an
illustrative example, Fig. 10 shows the computer-aided design
(CAD) model of an (ball-joint-like) orientation stage operated
on the principle of an SWM [1]. Unlike the SWM (Fig. 1) where
the rotor PMs are embedded in the “ball,” the PMs of the 3-DOF
stage in Fig. 10(a) are housed in the socket-like rotor assembly.
In Fig. 10(a), the stator EMs are air-cored and the structure (ex-
cept PMs) is nonmagnetic. Supported on a bearing, the rotor
is concentric with the stator; thus, the system has 3 DOF. The
rotor of the 3-DOF orientation stage is subjected to an external
torque Text in Fig. 10(b), where the center of gravity coincides
with the rotation center

Text = r × mloadg. (14)

Statically, the torque acting on the rotor is equal to the ex-
ternal torque. The interest here is to simulate the maximum
current inputs required for meeting a torque specification over
the operating range

0 ≤ (ψ, φ) ≤ 360◦ and − 22.5 ≤ θ ≤ 22.5◦

where (ψ, θ, φ) are the ZYZ Euler angles of the rotor.

Fig. 11. Parameters defining the pole locations.

TABLE IV
CURRENT LAYOUT OF THE EMS

As shown in Fig. 10(a), the PMs and EMs are equally spaced
on layers of circular planes with their radial magnetization axes
passing through the motor center. The magnetization axes are
characterized mathematically by vectors in terms of the two
angles (α from the x-axis to the projection on the xy-plane, and
β from the xy-plane to the vector as defined in Fig. 11). The
magnetization vector of the ith PM is given in rotor coordinates
(x, y, z) by (15)

ri = (−1)i−1 [ cos βri cos αri cos βr sin αri sin βri ]T .
(15)

Similarly, the jth EM magnetization (in stator frame XYZ) is

sj = [ cos βsj cos αsj cos βsj sin αsj sinβsj ]T . (16)

In (15) and (16), the subscripts “r” and “s” denote the rotor
and stator, respectively. Unlike the PM, the direction of the EM
is defined by the polarity of the current. The orientation stage
(Fig. 10) has three layers of eight stator EMs and two layers of
12 rotor PMs; the coordinates are given in Fig. 11. The PMs and
EMs are arranged in pairs such that they are electromechanically
symmetric. Because of the symmetry, the EMs are grouped into
ten electrical inputs (Table IV). Unlike the SWM (Fig. 1), the
orientation stage (Fig. 10) has a third layer of EMs (EM17–
EM20) along the equator offering additional torques about the
xy-plane.

A. Forward Torque Model

The forward torque model of the PM-based spherical motor
with linear magnetic properties has the form [3], [9]

T = [TX TY TZ ]T =
[
K̄

]
I (17)

where

K̄(∈ R
3×ms ) = [

⇀

K1 · · ·
⇀

Kp · · ·
⇀

Kms
] (17a)

I = [ I1 · · · Ip · · · Ims
]T (17b)
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where Ip is the current input to the pth EM and ms is the
total number of EMs. In (17a), the torque characteristic vec-
tor (

⇀

Kp ∈ R
3×1 , contributed by Ip to the whole rotor) at each

orientation (ψ, θ, φ) can be derived using the dipole force
equation

⇀

Kp =
µ0

4π

nr∑
i=1

mri

np∑
j=1

msj
[(Rsj + ri + − Rsj −ri + )

×Rri + − (Rsj + ri− − Rsj −ri−) × Rri− ] (18)

where np (or nr ) is the number of dipoles for each EM (or PM).

B. Inverse Torque Model

Since the 3-DOF orientation stage has more current inputs
than its mechanical DOF, the optimal current input vector for
a given torque is found by minimizing the input energy con-
sumption subject to the required torque constraint. Provided
that the input currents are kept within limits, the optimal current
input vector can be solved using Lagrange multipliers. For a
system where ms EMs are grouped into m independent inputs,
the optimal solution for u = [u1 · · · up · · · um ]T can
be written in closed form [3]

u = [K]T([K][K]T)−1T. (19)

For the layout in Table IV where m = 10, and thus, K(∈
R

3×10)

K = [(
⇀

K1 +
⇀

K13) (
⇀

K2 +
⇀

K14) · · ·

(
⇀

K17 −
⇀

K20 −
⇀

K21 +
⇀

K24)]. (19a)

C. Simulation Results

Two sets of simulation results are given here to illustrate the
effects of pole sizes on the magnetic torque and the inverse
torque model of the orientation stage.

1) Effect of Pole Size on the Magnetic Torque: Observations
in Fig. 4 suggest that both small ar and L (for a given ao ) have
a significant effect on the increase in the z-component magnetic
fluxes, and hence, on the compact design of a spherical motor.
The effect can be illustrated with the example in Fig. 12 and
Table V, where two pole sizes of a spherical motor are
compared.

Design 1 (D1) simulates the torque between the rotor PM and
stator EM of the SWM [9], where L ≥ 1, while design 2 (D2)
models that of the 3-DOF orientation stage (Fig. 10) with the
same outer radius Ro = 76.2 mm. In D2, both the PM and EM
have a much smaller L of 0.2 and 0.3, respectively, and as a
result, the rotor PM (embedded in the “socket”) has a 1.4 times
larger rotational radius than that of D1. The EM in Table I is
used for D2 and repeated here for ease of comparison.

The effects of the pole size on the magnetic torque are com-
pared in Fig. 13 that plots the torque as a function of γ (the
separation angle between the magnetzation axes of PM and
EM). As compared to D1 in Fig. 13, D2 offers 2.4 times higher
maximum torque and converts 3.6 times more mechanical en-

TABLE V
PARAMETERS USED FOR STATOR AND ROTOR POLES

Fig. 12. Comparison of design parameters (Ro = 76.2 mm).

Fig. 13. Effect of pole geometries on actuator torque.

ergy (represented by the area under the torque–displacement
curve).

2) Inverse Torque Model of the Orientation Stage (D2): The
parameters used in simulating the inverse torque model (19) with
the component

⇀

Kp given by (18) are based on Fig. 11, D2 in
Table V, and Table VI. Due to symmetry, only the input pro-
files in the range of 0 ≤ ψ ≤ 90◦ and −22.5◦ ≤ θ ≤ 22.5◦

are plotted. Fig. 14 shows the current profiles of each of
the current inputs required to maintain the external torque;
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TABLE VI
ORIENTATION-STAGE SIMULATION PARAMETERS

Fig. 14. Current inputs in each stator EM.

each point represents the maximum current for the orienta-
tion (ψ, θ, 0 ≤ φ ≤ 360◦). Except near the boundary, most
of the required currents are within 2 A. The statistics of the EM-
required inputs are summarized in Table VII, which suggests
that the maximum current required is about 3 A for the specified
load (and rotor weight) of 10 kg.

TABLE VII
INPUT STATISTICS (CURRENT IN AMPERES)

V. CONCLUSION

We have presented a new, time-efficient method for model-
ing an ML EM as an equivalent PM such that the magnetic
field of the EM can be characterized using a DMP. The ad-
vantage of modeling the PM and EM using DMP has been il-
lustrated through a force computation. Unlike other commonly
used methods that often require to calculate a time-consuming
numerical (volume or surface) integral to derive the force, the
dipole model replacing integrals by summations computes mag-
netic forces in closed form.

The dipole models have been validated by comparing results
against exact field solutions and published experimental force
data, which show excellent agreement. Along with the proto-
type CAD design of a 3-DOF orientation stage, we simulate
the maximum current inputs required of the spherical motor
(150 mm × 150 mm × 150 mm) for a given design specifica-
tion. The simulation suggests that the maximum current required
is about 3 A for the specified load (and rotor weight) of 10 kg.
Thick coils (or small ar ) with small L play an effective role to
achieve high torque-to-volume ratios, and thus, are important in
applications where compact coil designs are used.

Although the method has been discussed in the context of a
cylindrical EM (where some analytical and experimental results
are also available for model validation), it can be extended to
EMs having other customized shapes.
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